

Current Status of Carbon Emissions in the Aluminium Electrolysis Industry and Analysis of Carbon Reduction Pathways

Jiao Qingguo¹, Wang Huaijiang², Zhang Yanan³, Li Changlin⁴ and Bao Shengzhong⁵

1,4. Second Level Researchers - Professor Level Senior Engineers

2. Vice General Manager - Professor Level Senior Engineer

3. Director - Professor Level Senior Engineer

5. Vice Director - Professor Level Senior Engineer

Zhengzhou Non-ferrous Metals Research Institute of Chalco (ZRI), Zhengzhou, China

Corresponding author: qg_jiao@chinalco.com.cn

<https://doi.org/10.71659/icsoba2025-al063>

Abstract

DOWNLOAD
FULL PAPER

Aluminium electrolysis is a highly energy-intensive and high-emission industry, generating substantial amounts of CO₂ greenhouse gases directly or indirectly during production, making it a key focus for global carbon emissions monitoring. In response to national carbon reduction requirements and targets for the aluminium industry, this paper analyses the mechanisms of greenhouse gas emissions in aluminium electrolysis, presents the current status of carbon emissions in the industry, and examines the technologies, approaches and potentials of greenhouse gas emission reduction from three key perspectives: power decarbonization, direct emission reduction, and PFC emission reduction, providing a reference for the aluminium industry to advance greenhouse gas emission reduction.

Keywords: Aluminium electrolysis, Carbon emission, Greenhouse gases, PFC, Anode effect.

1. Introduction

According to the Global Carbon Budget 2023 report released by the International Energy Agency (IEA) in March 2024, global energy-related carbon dioxide (CO₂) emissions increased by 410 million tonnes in 2023, rising by 1.1 % compared to 2022 and reaching a record high of 37.4 billion tonnes. China accounted for the largest share of global CO₂ emissions at 12.6 billion tonnes, representing approximately 34 % of the world's total [1]. As the world's leading producer in the aluminium industry, China's primary aluminium output reached 43.396 million tonnes in 2024, accounting for about 59.4 % of global output, according to International Aluminium Institute statistics. Estimates indicate that the total CO₂ emissions amounted to approximately 426 million tonnes, contributing roughly 5 % to the nation's net CO₂ emissions.

The aluminium electrolysis industry emits significant amounts of greenhouse gases due to the use of carbon anodes during production, while the substantial consumption of thermal power resources also indirectly generates considerable greenhouse gas emissions. As a result, the electrolytic aluminium industry has become one of China's key industries for carbon emissions control. On 22 September 2020, General Secretary Xi Jinping announced at the 75th General Assembly of the United Nations China's "dual carbon" goals: one to peak emissions before 2030, and the other to achieve carbon neutrality before 2060. This marks China's first explicit global announcement of the "carbon peak" and "carbon neutrality" targets, representing the most significant climate commitment by any nation to date in mitigating global warming [2–4]. In May 2024, the State Council issued a notice on the issuance of "2024–2025 Energy Conservation and Carbon Reduction Action Plan", requiring governments at all levels and ministries to implement energy conservation and carbon reduction initiatives by sector and industry. The electrolytic aluminium industry is required to strictly implement the replacement of production capacity quota.

By the end of 2025, the proportion of production capacity above the energy efficiency benchmark level in the electrolytic aluminium industry will reach 30 %, and the proportion of renewable energy use will reach more than 25 %. Therefore, gaining a comprehensive understanding of the carbon emission mechanism and the current situation of aluminium electrolysis industry, as well as applying new technologies and exploring innovative approaches for energy conservation and emission reduction, has become a critical task for the industry.

2. Mechanism of Carbon Emission in Aluminium Electrolysis

Carbon dioxide is referred to as a greenhouse gas due to its strong absorption and thermal insulation capacity. It can effectively absorb long-wave infrared radiation emitted from the earth's surface, thereby preventing the dissipation of heat and leading to a rise in earth's surface temperature. The greenhouse effect can trigger a series of environmental issues, such as rising sea levels, abnormal climate patterns, and increased extreme weather. Consequently, controlling greenhouse gas emissions has become a globally shared priority.

The carbon dioxide emissions in the aluminium electrolysis process primarily consist of three categories:

- 1) Direct CO₂ emissions from carbon anode consumption;
- 2) PFC greenhouse gas emissions generated during anode effects in the electrolysis process, expressed as CO₂ equivalent; and
- 3) Indirect CO₂ emissions from electricity consumption [5].

2.1 Carbon Emission Mechanism of Anode Consumption

The cryolite-alumina molten salt electrolysis process is adopted for aluminium electrolysis production. Both the anode and cathode materials need to possess properties such as high-temperature resistance, immunity to molten salt corrosion, and high electrical conductivity, typically fulfilled by carbon materials. When direct current is applied, electrochemical reactions occur at both anode and cathode, with the process described as follows [6]:

The above reaction Equation (1) indicates that the carbon anode not only serves as a conductive material but also participates in the electrochemical reaction, generating carbon dioxide with oxygen. According to the calculation of the reaction Equation (1), the theoretical carbon consumption per tonne of primary aluminium produced is 333.867 kg/t Al, corresponding to CO₂ emissions of 1223.331 kg CO₂/t Al. Currently, the actual net carbon anode consumption in domestic aluminium production in well operated cells is around 400 kg C/t Al, resulting in CO₂ emissions of approximately 1467 kg CO₂/t Al, assuming no influence from other impurities.

2.2 Formation Mechanism of PFC

The primary components of PFC are tetrafluoromethane (CF₄) and hexafluoroethane (C₂F₆). The formation mechanism of PFC primarily occurs during aluminium electrolysis when the alumina (Al₂O₃) mass fraction in the electrolyte is below 1 %. At this point, the mass fraction of oxygen ions on the anode surface decreases rapidly, leading to an increase in anode overvoltage and cell voltage (typically reaching 25–35 V). This phenomenon is termed as "anode effect". The occurrence of anode effects causes carbon from the anode to react with fluoride ions in the cryolite bath, generating CF₄ and C₂F₆ through the following chemical reactions [7–8].

area between the anode and electrolyte, lowers the actual current density of anode, and decreases the frequency of anode effects or localized effects, thereby reducing perfluorocarbon (PFC) emissions during production.

- 2) Aluminium electrolysis intelligent crust breaking and feeding control system. This system can detect and preprocess material blockages during feeding, prevent hammerhead clogging, and ensure a crust hole opening rate of over 90 %, thereby reducing anode effect occurrence [28].
- 3) Anode current online monitoring technology. This technology enables real-time online monitoring of anode current in aluminium cells, effectively eliminating the data delay inherent in manual measurements. It allows prompt adjustment upon detecting current imbalance, thereby mitigating various issues caused by anode current deviation and ensuring stable and efficient aluminium cell operation [29].

4. Conclusions

By analysing the carbon reduction potential and technology path of aluminium industry, the author believes that the development and industrialization of carbon-free aluminium technology (inert anode electrolysis and aluminium chloride electrolysis) should be the important direction of carbon reduction in aluminium industry in the future, and complete replacement with non-carbon anode will avoid direct emission of carbon dioxide; Focusing on developing more energy-efficient process technologies (copper-embedded cathode steel bars, full-copper cathode bars, and alumina preheating technology) as key carbon reduction measures, to further reduce electricity consumption by 300 kWh/t Al, achieving carbon emission reductions per tonne of aluminium of over 180 kg CO₂/t Al.

The dedicated PFC emission reduction technology should be based on further optimization of the alumina feeding control system to ensure the stability and uniformity of alumina concentration in the electrolytic cells, thereby reducing the occurrence of anode effects. Simultaneously, it is essential to develop and enhance PFC process monitoring technologies and further investigate their generation mechanisms and patterns to provide improved methods and measures for comprehensive PFC emission reduction.

5. References

1. Wen Yuanyuan, Zhang Jianyu, Yu Xiaolong, Wang Qiang, Global carbon emissions and carbon market trends and current status and impacts on China, *China Investment*, 2024(6), 70-74.
2. Zhang Weiwei, Current status of carbon emissions in the nonferrous metals industry and pathways to achieve carbon neutrality, *Energy Saving in Nonferrous Metallurgy*, 2021, 37(2), 1-3.
3. Zhang Yanli, Zhang Yanfang, Guo Yu, Hou Guanghui, Qiu Shilin, Study on PFC emission identification in aluminium reduction cells, *Light Metals*, 2017(11), 31-35+39. (Chinese)
4. Li Chunhuan, Cao Alin, Carbon emission accounting methods for aluminium electrolysis industry, *Nonferrous Metals (Extractive Metallurgy)*, 2023(3), 47-52.
5. Zhang Bing, Yue Qiang, Greenhouse gas emission reduction analysis in China's primary aluminium electrolysis process based on NSGA-II algorithm, *Nonferrous Metals Engineering*, 2022, 12(7), 172-178.
6. Feng Naixiang, *Aluminium Electrolysis*, Beijing: Chemical Industry Press, 2006.
7. Qin Qingdong, Qiu Shilin, Discussion on PFC emission mechanism in industrial aluminium electrolysis process, *Light Metals*, 2015, (6), 23-27. (Chinese)
8. Luo Lifen, Qin Qingdong, Qiu Shilin, Chai Dengpeng, Research status of perfluorocarbon (PFC) emission reduction in aluminium electrolysis process, *Light Metals*, 2010, (10), 31-34. (Chinese)

9. Zhao Chunfang, Zhang Shuchao, Huang Xia, et al., Research on perfluorocarbon (PFC) emission reduction in aluminium industry, *Light Metals*, 2008, (10), 26-29. (Chinese)
10. Zhu Yelin, Zheng Xie, Chen Shijie, Liu Wanning, Ai Man, Shen Fenghua, Xiantg Kaisong, Liu Hui, Research progress on greenhouse gas tetrafluoromethane (CF₄) Treatment technologies., *Energy Environmental Protection*, 2023, 37(02), 73-84.
11. J. Mühle et al., Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane, *Atmos. Chem. Phys.*, 2010, 10, 5145–5164, <https://doi.org/10.5194/acp-10-5145-2010>.
12. IPCC Global Warming Potential Values, Greenhouse Gas Protocol, <https://ghgprotocol.org/sites/default/files/2024-08/Global-Warming-Potential-Values%20%28August%202024%29.pdf> (Accessed on 9 July 2025).
13. Aluminium sector greenhouse gas pathways to 2050, *International Aluminium Institute* 2021, <https://international-aluminium.org/resources/aluminium-sector-greenhouse-gas-pathways-to-2050-2021/>, (Accessed on 9 July 2025).
14. Li Mingyang, Gao Feng, Sun Boxue, Nie Zuoren, Carbon emission reduction and carbon peak analysis of China's aluminium production based on target scenarios. *The Chinese Journal of Nonferrous Metals*, 2022, 32(1), 148-158.
15. Yang Wenjie, Shi Zhirong, Jiao Qingguo. Current status and perspectives on energy-saving technologies in aluminium electrolysis. *Light Metals*, 2012(5), 26-30. (Chinese)
16. 2024-2025 Energy conservation and carbon reduction action plan, https://www.gov.cn/zhengce/zhengceku/202405/content_6954323.htm, (Accessed on 9 July 2025).
17. Zhou Yunfeng, Luo Lifen, Wang Yanfang, et al., Analysis and calculation of greenhouse gas emission reduction potential in aluminium electrolysis production process, *Light Metals*, 2021(7), 17-21. (Chinese)
18. Zhang Yuping, Application of high-quality carbon-free anode production technology, *Energy Saving in Nonferrous Metallurgy*, 2021, 37(5), 21-26.
19. Wang Boyi, Application research of anti-oxidation coating protection technology for prebaked anodes in aluminium electrolysis, *Light Metals*, 2020(10), 21-28. (Chinese)
20. Ma Junyi, Li Changlin, Hou Guanghui, Li Dongsheng, Cao Yongfeng,. Application and prospects of new materials in energy-saving and carbon-reduction technologies for large aluminium electrolytic cells, *Green Mining and Metallurgy*, 2023, 40(2), 41-45, 72.
21. Liao Xian'an, Bao Shengzhong, Sun Yi, A review of carbon-free aluminium electrolysis technology, *Light Metals*, 2019(3), 1-4. (Chinese)
22. Xiu Meng, Liu Jianhua, Research progress on corrosion behavior of inert anodes in molten electrolytes for aluminium electrolysis, *China Nonferrous Metallurgy*, 2024, 53(1), 34-46.
23. RUSAL achieves major technological breakthrough in inert anode aluminium electrolysis cells, *Aluminium Fabrication*, 2021, 259(2): 69.
24. 2019 Life cycle inventory (LCI) data and environmental metrics, <https://international-aluminium.org/resources/2019-life-cycle-inventory-lci-data-and-environmental-metrics/>, and, Aluminium sector greenhouse gas emissions, <https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/>.
25. Xiang Zhen. Research on PFC emission reduction approaches in aluminium electrolysis industry. *Environmental Science and Technology*, 2011, 24(5), 59-61+66.
26. Zhang Yuting, Emission status and analysis of perfluorocarbon in aluminium electrolysis production process, *Green Mining and Metallurgy*, 2023, 39(4), 36-40.
27. Chen Kaibin, Zhang Xugui, Li Changlin, Fang Bin, Wu Xujian, et al., A Method for reducing perfluorocarbon emissions in aluminium electrolysis, *China Patent*, 2022210713148.4. 2022-09-27.
28. Zheng Bin, Development and application of intelligent feeding control system for aluminium reduction cells, *World Nonferrous Metals*, 2021(7):6-7.

29. Ao Yu, Huang Ruoyu, Tan Shanwei, Development and application of online anode current distribution monitoring system for aluminium reduction cells, *Light Metals*, 2022(3), 28-32+37. (Chinese)